Nutrient Budget:Measure to Manage

Karen Lowell

Agronomist, USDA-NRCS
California Certified Crop Advisor

Karen.Lowell@ca.usda.gov 831.424.1036 x119

I will use what I learn in this session to.....

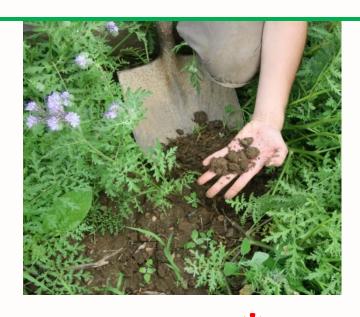
- Understand the value of a nutrient budget
- Understand factors that growers must consider when making management decisions
- Help growers prepare a nutrient budget from ranch records and lab analyses of soil, water, crop tissue, yield data, etc.
- Help growers make fertility management decisions (4 R's)

Key Elements for Nutrient Management

Management by The 4 R's

Source Rate
Time Place

Irrigation Water Management


Nutrient Budget

		: + D.	
NI	utr	ient B	udget Worksheet ——
1. Identifying Information and Site Char	racteristic	s	
1.1 Today's Date	1-Nov-13		
1.2 Field/Ranch Location	Happy Str	awberry Ranch	
1.3 Irrigation Method	drip		
1.4 Planned Crop	Strawberr	у	
1.5 Expected Yield (include units)	6000 tray	s/A	
1.6 Planting Date for Planned Crop	transplant	ts to be planted November	14
1.7 Soil type and texture	Arnold los	my sand	
2. Nutrients Available			
2.1 Soil Test Results (date of test)		7-Nov-13	NOTES
2.1.1 Nitrate ppm	69	276	ppm N * 4 is estimate of lbs/A N to 12 inch depth, gray box calculates
2.1.2 P ppm		51	pH equal/greater than 6.0 use Olsen/Sodium Bicarbonate, pH less than 6.0 use Bray value
2.1.3 K ppm		159	Usually listed as NH ₄ OAc K
2.1.4 % SOM and expected N release	2.3	110.4	See assumptions and calculation in guidance document, gray box calculates
2.2 Irrigation Water Test (date of test)		1-Jun-13	
2.2.1 Irrigation Water NO ₃ -N (ppm)		14	See notes in guidance if test gives nitrate (NO ₃) and not nitrate-nitrogen (NO ₃ -N)
2.2.2 Acre inches water applied		30	See notes in guidance if not known.
2.2.3 lbs N/A applied with irrigation water		95.3	pom NO ₃ -N ^o 0.227 ribs N/acre Inch, multiply by acre inches applied for lbs N/A applied with irrigation water, gray box calculates.
2.3 Organic soil amendments Date applied:		14-Oct-13	
2.3.3 N from amendments (lbs/A)	90		Carry value over from the Nutrients in Organic Amendments Tab
2.3.4 P ₂ O ₅ from amendments (lbs/A)	36		Carry value over from the Nutrients in Organic Amendments Tab

Fundamentals of Nutrient Budget

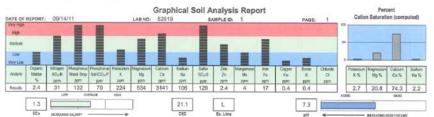
Fertilizer Applications*

Non-fertilizer Credits and Adjustments*

Crop Requirement

A & L WESTERN AGRICULTURAL LABORATORIES

1311 WOODLAND AVE #1 . MODESTO, CALIFORNIA 95351 . (209) 529-4060 . FAX (209) 529-4736



REPORT NUMBER: 11-255-055

CLIENT NO: 99999

SUBMITTED BY

GROWER

Soil Fertility Guidelines

Delonita Lime (75 score) (70 score)	Cypsurs	Elemental Suffur
--	---------	---------------------

CROP: STRAWBERRIES

RATE: Ib/acre

SOLUBLE SALTS: Levels above 1.0 mmho/cm (dS/m) need to be reduced before further fertilizing, if aiming for 100% growth potential.

NITROGEN: Use local conditions and experience with variety to determine rates and timing. Allow for

nitrate levels in your water source also (ppm NO) X O.61 = 1b N/ac-ft water). Monitor plant-N. POTASH applications on soils with more than about 200 ppm K may not show a response. Consider further testing/tissue analysis if in doubt and if report shows less than 2-3k K cation saturation.

BORCN: Aim for soil levels above 0.5 ppm to avoid a deficiency. A tissue analysis at the appropriate

time will determine more accurately, plant availability. ADD BORON WITH CAUTION.

M3 utture Mike Buttress, CPAg A & L WESTERN LABORATORIES, INC.

NOTES:

"Our reports and letters are the the exclusive and confidential test of our clients, and may not be reproduced in whole or in part, our may any reference be made to the work, the maint or the company in any advertising, or own from an effective produce in a fidelity or a marking. While these recurrenced without delawing one prior written advertising. The jobble of any copy in controlled by many factors in addition, to make the maintain and the internal and addition to make the maintain and the internal and addition to make the make the manual and addition to make the make the manual and addition to make the make the manual and t

A & L WESTERN AGRICULTURAL LABORATORIES

1311 WOODLAND AVE #1 • MODESTO, CALIFORNIA 95351 • (209) 529-4080 • FAX (209) 529-4736

REPORT NUMBER: SEND TO:

CLIENT NO:

SUBMITTED BY:

CUSTOMER:

LAB NO:

ORGANIC FERTILIZER REPORT

PAGE: 1

SAMPLE		REPORT OF ANALYSIS IN PERCENT										REPORT OF ANALYSIS IN PARTS PER MILLION								
ID	Nitrogen	Phosphorus P	Phosphate P ₂ O ₂	Potassium K	Potash K _s O	Sulfur	Magnesium Mg	Calcium Ca	Sodium Na	fron Fe	Aluminum Al	blanganese Mn	Copper	Zinc Zn						
JLEEM	2.06	0.43	0.99	1.870	2.253															

1000	POUNDS OF NUTRIENTS / TON																			
SAMPLE	Nitrogen N	Phosphorus P	Phosphate P ₂ O ₅	Potassium K	Potash K ₂ O	Sulfur	Magnesium Mg	Calcium Ca	Sodium Na	iron Fe	Aluminum Al	Manganese Mn	Copper	Zinc Zn						
JLEEM	41.2	8.6	19.7	37.4	45.1								1							

Reported on an as-received basis

X Reported on a dry basis

Moisture = 38,37%

Remarks: To convert to pounds of nutrients/ton as received, multiply pounds of nutrients/ton as reported by (100 - maisture %)/100.

Our reports and letters are for the exclusive and confidential use of con rejucts and amay not be reproducted in whole or in part, nor ma our climbs, and may not be reproducted in whole or in part, nor ma any reference he made to the work, the result or the company is any advertising, news referse, or other public announcements without obtaining our polar written authorization.

This report applies only to the sample(s) tested. Samples are retained a maximum of thirty days after testing. 2

Robert Butterfield A & L WESTERN LABORATORIES, INC. ANALYTICAL CHEMISTS and BACTERIOLOGISTS Approved by State of California

TEL: 831-724-5422 FAX: 831-724-3188

SOIL CONTROL LAB

Account Number: 2090016-1-4818

Alba

P.O. Box 6264 Salinas, CA 93912 Attn: Mike Oliver

Reporting Date: September 13, 2012

Date Received: Sample Identification:

Phosphorus (as P₂O₄)

Potassium (as K₂O)

Water samples received 09/04/12 Alba Ag Well, collected 09/04/12 12:25

Quantitative chemical analysis with results reported in mg/L (ppm)

Report: unless otherwise stated. Laboratory #:

2090016-1/1

Degree of Restriction on

		Irrigat	ion Use
		Surface	Sprinkler
pH value (pH units) Conductivity (millimhos/cm)	7.5 0.91	Normal Ran Moderate	nge 6.5 to 8.4 Moderate
Carbonate Alkalinity (as CO ₃) Bicarbonate Alkalinity (as HCO ₃) Total Dissolved Solids	less than 5 190 590	Moderate	Moderate Moderate
Nitrate (as NO3) Chloride (as Cl) Sulfate (as SO4)	100 120 54	Moderate None	Moderate Moderate
Phosphate (PO4) Boron (B) Calcium (Ca)	less than 1 less than 0.1 67	None	None
Magnesium (Mg) Potassium (K) Sodium (Na)	29 3.1 60	None	None
Iron (Fe) Manganese (Mn)	less than 0.05 less than 0.02	None None	:
Adjusted Rna Sodium Absorption Ratio (SAR) Adjusted SAR	1.7 1.5 3.2	None	None
Nitrogen (as N)	lbs/acre ft of water 62		

less than 2.1 Iron in excess of 0.30 ppm or Manganese in excess of 0.05 ppm can cause blockages with drip irrigation.

Mike Gallowny

Crop Nitrogen Budgeting

Table 5. Examples of crop N uptake vs. N removed in harvested product. N harvest index is N removed in harvest divided by N uptake, expressed as %. (The values shown here are to illustrate the concept, and it should not be assumed that they are representative.)

	N uptake, lb/acre	N removed in harvest, lb/acre	N uptake minus harvest, lb/acre	N harvest index, %
Corn, grain	240	120	120	50%
Corn, silage	250	225	25	90%
Cotton	250	140	110	56%
Processing tomato	240	150	90	63%
Lettuce	140	70	70	50%
Strawberry	190	90	100	47%
Almond	224	204	20	91%

Also see: Crop Nitrogen Uptake and Partitioning. Available online at:

http://apps.cdfa.ca.gov/frep/docs/N Uptake.html

From: CCA Training Course Materials, available online:

http://ciwr.ucanr.edu/NitrogenManagement/Training_Modules/

This table found on page 13 of Module 5: Nitrogen budgeting "cheat sheet" with definitions and formulas (handout)

TEL: 831-724-5422 FAX: 831-724-3188

Account Number:

Reporting Date:

Date Received:

Water samples received 09/04/12

Sample Identification:

Quantitative chemical analysis with results reported in mg/L (ppm) Report:

unless otherwise stated.

Laboratory #: 2090016-1/1

Degree of Restriction on

		•	on Use
		Surface	Sprinkler
pH value (pH units)	7.5		ge 6.5 to 8.4
Conductivity (millimhos/cm)	0.91	Moderate	Moderate
Carbonate Alkalinity (as CO ₃) Bicarbonate Alkalinity (as HCO ₃) Total Dissolved Solids	less than 5 190 590	- - Moderate	- Moderate Moderate
Nitrate (as NO3) Chloride (as Cl) Sulfate (as SO4)	100 120 54	Moderate None	Moderate Moderate
Phosphate (PO4) Boron (B) Calcium (Ca)	less than 1 less than 0.1 67	None -	None -
Magnesium (Mg) Potassium (K) Sodium (Na)	29 3.1 60	- None	- None
Iron (Fe) Manganese (Mn)	less than 0.05 less than 0.02	None None	-
Adjusted Rna Sodium Absorption Ratio (SAR) Adjusted SAR	1.7 1.5 3.2	None - -	None - -
Nitrogen (as N) Phosphorus (as P ₂ O ₅) Potassium (as K ₂ O)	lbs/acre ft of water 62 less than 2.1 10	-	

Iron in excess of 0.30 ppm or Manganese in excess of 0.05 ppm can cause blockages with drip irrigation.

Mike Gallowny

A & L WESTERN AGRICULTURAL LABORATORIES

1311 WOODLAND AVE #1 . MODESTO, CALIFORNIA 95351 . (209) 529-4080 . FAX (209) 529-4736

REPORT NUMBER: 11-255-055 CLIENT NO: 99999

SEND TO:

SUBMITTED BY:

Graphical Soil Analysis Report Percent Cation Saturation (computed) DATE OF REPORT: 09/14/11 LAB NO: 52819 SAMPLE ID: 1 PAGE: Very High High Medium Low Very Low Organic Nitrogen Phosphorus Phosphorus Potassium Magnesium Calcium Sodium Zinc Iron Copper Boron Chloride Potassium Magnesium Calcium Sodium Analyte Matter NO₂-N Weak Bray NaHCO -P Ca Na SO,-S Zn Fe В CI Mg % Na % 96 ppm 2.4 31 132 70 Results 224 534 3141 106 2.4 17 129 4 0.4 0.4 2.7 20.8 74.3 2.2 AVERAGE ACIDIC 1.3 21.1 7.3 CEC Ex. Lime INCREASING SALINITY pH INCREASING NEED FOR LIME dS/m meq/100g Buffer pH:

Soil Fertility Guidelines

CROP: STRAWBERR	IES
-----------------	-----

RATE: Ib/acre

NOTES:

Dolomite (70 score)	Lime (70 score)	Gypsum	Elemental Sulfur	Nitrogen N	Phosphate P ₂ O ₅	Potash K ₂ O	Magnesium Mg	Sulfur SO ₄ -S	Zinc Zn	Manganese Mn	Iron Fe	Copper Cu	Boron B	
			500	100		40							0.5	II.

C SOLUBLE SALTS: Levels above 1.0 mmho/cm (dS/m) need to be reduced before further fertilizing, if aiming O for 100% growth potential.

M NITROGEN: Use local conditions and experience with variety to determine rates and timing. Allow for

M nitrate levels in your water source also (ppm NO3 X 0.61 = lb N/ac-ft water). Monitor plant-N.

E POTASH applications on soils with more than about 200 ppm K may not show a response. Consider further

N testing/tissue analysis if in doubt and if report shows less than 2-3% K cation saturation.

T BORON: Aim for soil levels above 0.5 ppm to avoid a deficiency. A tissue analysis at the appropriate

S time will determine more accurately, plant availability. ADD BORON WITH CAUTION.

"Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the result or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization." The yield of any crop is controlled by many factors in additions to nutrition. While these recommendations are bused on agronomic research and experience, they DO NOT GUARANTEE the achievement of satisfactory performance. © Copyright 1994 A & L WESTERN LABORATORIES, INC.

Mike Buttress, CPAg

A & L WESTERN LABORATORIES, INC

A & L WESTERN AGRICULTURAL LABORATORIES

1311 WOODLAND AVE #1 • MODESTO, CALIFORNIA 95351 • (209) 529-4080 • FAX (209) 529-4736

REPORT NUMBER:

CLIENT NO:

SEND TO:

SUBMITTED BY:

CUSTOMER:

LAB NO:

DATE:

ORGANIC FERTILIZER REPORT

PAGE: 1

SAMPLE	1 1 1 1		4,7754	REPORT OF	ANALYSIS	IN PERCEN	Tigo inte	e marketing in	REPORT OF ANALYSIS IN PARTS PER MILLION							
ID	Nitrogen N	Phosphorus P	Phosphate P ₂ O ₅	Potassium K	Potash K ₂ O	Sulfur S	Magnesium Mg	Calcium Ca	Sodium Na	Iron Fe	Aluminum Al	Manganese Mn	Copper Cu	Zinc Zn		
JLEEM	2.06	0.43	0.99	1.870	2.253											

SAMPLE	POUNDS OF NUTRIENTS / TON														4. 10	6 AF III						
ID	Nitrogen N	Phosphorus P	Phosphate P ₂ O ₅	Potassium K	Potash K₂O	Sulfur S	Magnesium Mg	Calcium Ca	Sodium Na	lron Fe	Aluminum Al	Manganese Mn	Copper Cu	Zinc Zn								
JLEEM	41.2	8.6	19.7	37.4	45.1					·												

Reported on an as-received basis

Moisture =

X Reported on a dry basis

Moisture = 38.37%

Remarks: To convert to pounds of nutrients/ton as received, multiply pounds of nutrients/ton as reported by (100 - moisture %)/100.

Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the result or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization.

This report applies only to the sample(s) tested. Samples are retained a maximum of thirty days after testing.

Robert Butterfield A & L WESTERN LABORATORIES, INC.

Why Measure to Manage?

- Plan management
- Evaluate outcomes
- Optimize crop yield and quality
- Avoid problems

